search for




 

Quantitative measures of pivot shift on knee rotatory instability
Arthrosc Orthop Sports Med 2018;5:11-18
Published online January 1, 2018;  https://doi.org/10.14517/aosm17011
© 2018 Korean Arthroscopy Society and Korean Orthopedic Society for Sports Medicine.

Dhong Won Lee, Ji Hwan Lee, Du Han Kim, Jung Ho Park, Jin Goo Kim

Department of Orthopedic Surgery, Konkuk University Medical Center, Seoul, Korea
Correspondence to: Jin Goo Kim, Department of Orthopedic Surgery and Sports Medical Center, Konkuk University Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea. Tel: +82-2-2030-7606, Fax: +82-2-2030-7369, E-mail: boram107@hanmail.net
Received July 27, 2017; Revised September 1, 2017; Accepted October 10, 2017.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
One of the key prerequisites to returning to sports activities after knee injury is restored rotatory instability. The pivot shift test is the standard way to evaluate rotatory instability. However, manual testing methods reliant on the subjective judgment of examiners may fail to discriminate the dynamic stages of rotatory instability, especially because the pivot shift phenomenon occurs as a result of combination of translation and rotation movements of the tibiofemoral joint. To this end, several studies have investigated novel ways to quantitatively measure kinematics of the pivot shift test by developing new measurement devices. Measurement devices, such as navigation, electromagnetic, and inertial sensors, and image analysis systems have been developed. Low-cost, non-invasive, and self-contained devices are gaining popularity for their ease of use. Here, we review the advantages and disadvantages of current measurement systems of pivot shift tests and summarize the relevant scientific knowledge of this field for future research.
Keywords : Anterior cruciate ligament; Anterolateral ligament; Knee kinematics; Rotatory instability; Pivot shift test
References
  1. Kim SJ, Kim HK. Reliability of the anterior drawer test, the pivot shift test, and the Lachman test. Clin Orthop Relat Res 1995;(317):237-42.
    Pubmed
  2. Kilinc BE, Kara A, Celik H, Oc Y, Camur S. Evaluation of the accuracy of Lachman and Anterior Drawer Tests with KT1000 in the follow-up of anterior cruciate ligament surgery. J Exerc Rehabil 2016;12:363-7.
    Pubmed KoreaMed CrossRef
  3. Makhmalbaf H, Moradi A, Ganji S, Omidi-Kashani F. Accuracy of lachman and anterior drawer tests for anterior cruciate ligament injuries. Arch Bone Jt Surg 2013;1:94-7.
    Pubmed KoreaMed
  4. Katz JW, Fingeroth RJ. The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med 1986;14:88-91.
    Pubmed CrossRef
  5. Rangger C, Daniel DM, Stone ML, Kaufman K. Diagnosis of an ACL disruption with KT-1000 arthrometer measurements. Knee Surg Sports Traumatol Arthrosc 1993;1:60-6.
    Pubmed CrossRef
  6. Boyer P, Djian P, Christel P, Paoletti X, Degeorges R. Reliability of the KT-1000 arthrometer (Medmetric) for measuring anterior knee laxity: comparison with Telos in 147 knees. Rev Chir Orthop Reparatrice Appar Mot 2004;90:757-64.
    CrossRef
  7. Kocher MS, Steadman JR, Briggs KK, Sterett WI, Hawkins RJ. Relationships between objective assessment of ligament stability and subjective assessment of symptoms and function after anterior cruciate ligament reconstruction. Am J Sports Med 2004;32:629-34.
    Pubmed CrossRef
  8. Kuroda R, Hoshino Y, Araki D, et al. Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc 2012;20:686-91.
    Pubmed CrossRef
  9. Kuroda R, Hoshino Y, Kubo S, et al. Similarities and differences of diagnostic manual tests for anterior cruciate ligament insufficiency:a global survey and kinematics assessment. Am J Sports Med 2012;40:91-9.
    Pubmed CrossRef
  10. Lopomo N, Zaffagnini S, Bignozzi S, Visani A, Marcacci M. Pivotshift test: analysis and quantification of knee laxity parameters using a navigation system. J Orthop Res 2010;28:164-9.
    Pubmed
  11. Barber-Westin SD, Noyes FR. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 2011;27:1697-705.
    Pubmed CrossRef
  12. Roessler PP, Schüttler KF, Heyse TJ, Wirtz DC, Efe T. The anterolateral ligament (ALL) and its role in rotational extra-articular stability of the knee joint: a review of anatomy and surgical concepts. Arch Orthop Trauma Surg 2016;136:305-13.
    Pubmed CrossRef
  13. Pomajzl R, Maerz T, Shams C, Guettler J, Bicos J. A review of the anterolateral ligament of the knee: current knowledge regarding its incidence, anatomy, biomechanics, and surgical dissection. Arthroscopy 2015;31:583-91.
    Pubmed CrossRef
  14. Kosy JD, Mandalia VI. Revisiting the anterolateral ligament of the knee. J Knee Surg 2016;29:571-9.
    Pubmed
  15. Lopomo N, Zaffagnini S, Signorelli C, et al. An original clinical methodology for non-invasive assessment of pivot-shift test. Comput Methods Biomech Biomed Engin 2012;15:1323-8.
    Pubmed CrossRef
  16. Matsumoto H. Mechanism of the pivot shift. J Bone Joint Surg Br 1990;72:816-21.
    Pubmed
  17. Sena MP, DellaMaggioria R, Lotz JC, Feeley BT. A mechanical pivotshift device for continuously applying defined loads to cadaveric knees. Knee Surg Sports Traumatol Arthrosc 2015;23:29008.
    Pubmed CrossRef
  18. Yamamoto Y, Ishibashi Y, Tsuda E, Tsukada H, Maeda S, Toh S. Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees. Sports Med Arthrosc Rehabil Ther Technol 2010;2:27.
    CrossRef
  19. Ishibashi Y, Tsuda E, Yamamoto Y, Tsukada H, Toh S. Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciate ligament reconstruction: is the posterolateral bundle more important? Arthroscopy 2009;25:488-95.
    Pubmed CrossRef
  20. Monaco E, Maestri B, Conteduca F, Mazza D, Iorio C, Ferretti A. Extra-articular ACL reconstruction and pivot shift: in vivo dynamic evaluation with navigation. Am J Sports Med 2014;42:1669-74.
    Pubmed CrossRef
  21. Hoshino Y, Kuroda R, Nagamune K, et al. In vivo measurement of the pivot-shift test in the anterior cruciate ligament-deficient knee using an electromagnetic device. Am J Sports Med 2007;35:1098-104.
    Pubmed CrossRef
  22. Kuroda R, Hoshino Y. Electromagnetic tracking of the pivot-shift. Curr Rev Musculoskelet Med 2016;9:164-9.
    Pubmed KoreaMed CrossRef
  23. Zaffagnini S, Signorelli C, Grassi A, et al. Assessment of the pivot shift using inertial sensors. Curr Rev Musculoskelet Med 2016;9:160-3.
    Pubmed KoreaMed CrossRef
  24. Lopomo N, Signorelli C, Bonanzinga T, Marcheggiani Muccioli GM, Visani A, Zaffagnini S. Quantitative assessment of pivotshift using inertial sensors. Knee Surg Sports Traumatol Arthrosc 2012;20:713-7.
    Pubmed CrossRef
  25. Labbé DR, Li D, Grimard G, de Guise JA, Hagemeister N. Quantitative pivot shift assessment using combined inertial and magnetic sensing. Knee Surg Sports Traumatol Arthrosc 2015;23:2330-8.
    Pubmed CrossRef
  26. Hoshino Y, Araujo P, Irrgang JJ, Fu FH, Musahl V. An image analysis method to quantify the lateral pivot shift test. Knee Surg Sports Traumatol Arthrosc 2012;20:703-7.
    Pubmed KoreaMed CrossRef
  27. Arilla FV, Rahnemai-Azar AA, Yacuzzi C, et al. Correlation between a 2D simple image analysis method and 3D bony motion during the pivot shift test. Knee 2016;23:1059-63.
    Pubmed CrossRef
  28. Hoshino Y, Araujo P, Ahldén M, et al. Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc 2013;21:975-80.
    Pubmed CrossRef
  29. Zaffagnini S, Bruni D, Martelli S, Imakiire N, Marcacci M, Russo A. Double-bundle ACL reconstruction: influence of femoral tunnel orientation in knee laxity analysed with a navigation system - an in-vitro biomechanical study. BMC Musculoskelet Disord 2008;9:25.
    Pubmed KoreaMed CrossRef
  30. Zaffagnini S, Klos TV, Bignozzi S. Computer-assisted anterior cruciate ligament reconstruction: an evidence-based approach of the first 15 years. Arthroscopy 2010;26:546-54.
    Pubmed CrossRef
  31. Maeda S, Tsuda E, Yamamoto Y, Naraoka T, Kimura Y, Ishibashi Y. Quantification of the pivot-shift test using a navigation system with non-invasive surface markers. Knee Surg Sports Traumatol Arthrosc 2016;24:3612-8.
    Pubmed CrossRef
  32. Pearle AD, Solomon DJ, Wanich T, et al. Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med 2007;35:1315-20.
    Pubmed CrossRef
  33. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P. Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 2007;454:59-65.
    Pubmed CrossRef
  34. Lane CG, Warren RF, Stanford FC, Kendoff D, Pearle AD. In vivo analysis of the pivot shift phenomenon during computer navigated ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2008;16:487-92.
    Pubmed CrossRef
  35. Bedi A, Musahl V, O’Loughlin P, et al. A comparison of the effect of central anatomical single-bundle anterior cruciate ligament reconstruction and double-bundle anterior cruciate ligament reconstruction on pivot-shift kinematics. Am J Sports Med 2010;38:1788-94.
    Pubmed CrossRef
  36. Imbert P, Belvedere C, Leardini A. Knee laxity modifications after ACL rupture and surgical intra- and extra-articular reconstructions:intra-operative measures in reconstructed and healthy knees. Knee Surg Sports Traumatol Arthrosc 2017;25:2725-5.
    Pubmed KoreaMed CrossRef
  37. Araki D, Kuroda R, Matsushita T, et al. Biomechanical analysis of the knee with partial anterior cruciate ligament disruption:quantitative evaluation using an electromagnetic measurement system. Arthroscopy 2013;29:1053-62.
    Pubmed CrossRef
  38. Nagai K, Hoshino Y, Nishizawa Y, et al. Quantitative comparison of the pivot shift test results before and after anterior cruciate ligament reconstruction by using the three-dimensional electromagnetic measurement system. Knee Surg Sports Traumatol Arthrosc 2015;23:2876-81.
    Pubmed CrossRef
  39. Araki D, Kuroda R, Kubo S, et al. A prospective randomised study of anatomical single-bundle versus double-bundle anterior cruciate ligament reconstruction: quantitative evaluation using an electromagnetic measurement system. Int Orthop 2011;35:43946.
    Pubmed KoreaMed CrossRef
  40. Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD. Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 2010;18:1269-76.
    Pubmed CrossRef
  41. Ahldén M, Araujo P, Hoshino Y, et al. Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee Surg Sports Traumatol Arthrosc 2012;20:708-12.
    Pubmed CrossRef
  42. Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W. Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg Sports Traumatol Arthrosc 2013;21:981-5.
    Pubmed CrossRef
  43. Petrigliano FA, Borgstrom PH, Kaiser WJ, McAllister DR, Markolf KL. Measurements of tibial rotation during a simulated pivot shift manoeuvre using a gyroscopic sensor. Knee Surg Sports Traumatol Arthrosc 2015;23:2237-43.
    Pubmed CrossRef
  44. Borgstrom PH, Markolf KL, Foster B, Petrigliano FA, McAllister DR. Use of a gyroscope sensor to quantify tibial motions during a pivot shift test. Knee Surg Sports Traumatol Arthrosc 2014;22:2064-9.
    Pubmed CrossRef
  45. Nakamura K, Koga H, Sekiya I, et al. Evaluation of pivot shift phenomenon while awake and under anaesthesia by different manoeuvres using triaxial accelerometer. Knee Surg Sports Traumatol Arthrosc 2017;25:2377-83.
    Pubmed CrossRef
  46. Musahl V, Griffith C, Irrgang JJ, et al. Validation of quantitative measures of rotatory knee laxity. Am J Sports Med 2016;44:2393-8.
    Pubmed CrossRef


January 2018, 5 (1)